Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice.
نویسندگان
چکیده
The activation of the poly(ADP-ribose) polymerase (PARP) plays an important role in the pathophysiology of various diseases associated with oxidative stress. We found increased amounts of poly(ADP) ribosylated proteins in diabetic kidneys of Lepr(db/db) (BKsJ) mice, suggesting increased PARP activity. Therefore, we examined the effects of two structurally unrelated PARP inhibitors (INO-1001 and PJ-34) on the development of diabetic nephropathy of Lepr(db/db) (BKsJ) mice, an experimental model of type 2 diabetes. INO-1001 and PJ-34 were administered in the drinking water to Lepr(db/db) mice. Both INO-1001 and PJ-34 treatment ameliorated diabetes-induced albumin excretion and mesangial expansion, which are hallmarks of diabetic nephropathy. PARP inhibitors decreased diabetes-induced podocyte depletion in vivo and blocked hyperglycemia-induced podocyte apoptosis in vitro. High glucose treatment of podocytes in vitro led to an early increase of poly(ADP) ribosylated modified protein levels. Reactive oxygen species (ROS) generation appears to be a downstream target of hyperglycemia-induced PARP activation, as PARP inhibitors blocked the hyperglycemia-induced ROS generation in podocytes. INO-1001 and PJ-34 also normalized the hyperglycemia-induced mitochondrial depolarization. PARP blockade by INO-1001 and PJ-34 prevented hyperglycemia-induced nuclear factor-kappaB (NFkappaB) activation of podocytes, and it was made evident by the inhibitor of kappaBalpha phosphorylation and NFkappaB p50 nuclear translocation. Our results indicate that hyperglycemia-induced PARP activation plays an important role in the pathogenesis of glomerulopathy associated with type 2 diabetes and could serve as a novel therapeutic target.
منابع مشابه
Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus.
Type 2 diabetes mellitus (T2DM) is associated with microvascular dysfunction. We hypothesized that increased poly(ADP-ribose) polymerase 1 (PARP-1) activity contributes to microvascular dysfunction in T2DM. T2DM (db(-)/db(-)) and nondiabetic control (db(-)/db(+)) mice were treated with 2 different PARP-1 inhibitors (INO-1001, 5 mg/kg per day and ABT-888, 15 mg/kg per day) for 2 weeks. Isolated ...
متن کاملRapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase.
Oxygen- and nitrogen-derived free radicals and oxidants play an important role in the pathogenesis of diabetic endothelial dysfunction. Recently we proposed the importance of oxidant-induced DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in the pathogenesis of diabetic endothelial dysfunction. In this study, we tested whether established diabetic end...
متن کاملEnhanced NF-kB Activity Impairs Vascular Function Through PARP-1–, SP-1–, and COX-2–Dependent Mechanisms in Type 2 Diabetes
Type 2 diabetes (T2D) is associated with vascular dysfunction. We hypothesized that increased nuclear factor-kB (NF-kB) signaling contributes to vascular dysfunction in T2D. We treated type 2 diabetic (db/db) and control (db/db) mice with two NF-kB inhibitors (6 mg/kg dehydroxymethylepoxyquinomicin twice a week and 500 mg/kg/day IKK-NBD peptide) for 4 weeks. Pressure-induced myogenic tone was s...
متن کاملRole of poly(ADP-ribose) polymerase activation in diabetic neuropathy.
Oxidative and nitrosative stress play a key role in the pathogenesis of diabetic neuropathy, but the mechanisms remain unidentified. Here we provide evidence that poly(ADP-ribose) polymerase (PARP) activation, a downstream effector of oxidant-induced DNA damage, is an obligatory step in functional and metabolic changes in the diabetic nerve. PARP-deficient (PARP(-/-)) mice were protected from b...
متن کاملEnhanced NF-κB Activity Impairs Vascular Function Through PARP-1–, SP-1–, and COX-2–Dependent Mechanisms in Type 2 Diabetes
Type 2 diabetes (T2D) is associated with vascular dysfunction. We hypothesized that increased nuclear factor-κB (NF-κB) signaling contributes to vascular dysfunction in T2D. We treated type 2 diabetic (db(-)/db(-)) and control (db(-)/db(+)) mice with two NF-κB inhibitors (6 mg/kg dehydroxymethylepoxyquinomicin twice a week and 500 μg/kg/day IKK-NBD peptide) for 4 weeks. Pressure-induced myogeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 55 11 شماره
صفحات -
تاریخ انتشار 2006